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A B S T R A C T

This study aims to develop a fast and simple method to trace the geographical origins, harvest years and varieties
of Lycium ruthenicum Murray (LRM) grown in China by employing e-nose and e-tongue assays and their com-
bination. Principal component analysis (PCA) and linear discriminant analysis (LDA) were applied for qualitative
classification and quantitative prediction. The results showed that e-nose and e-tongue assays and their com-
bination failed to recognize harvest years and varieties of LRM, but achieved reliable results for tracing LRM
geographical origins with a total classification ability of 86.4%, 86.8% and 92.6% respectively. In addition, the
analysis procedure required shorter time and less chemical reagents as compared to high-end instrumental
analysis or traditional methods like chemical analytical methods and sensory evaluation. This study demon-
strated that the multivariate statistical analysis combined with e-nose and e-tongue assays could be a reliable and
simplified method of tracing the geographical origins of LRM.

1. Introduction

Lycium ruthenicum Murray (LRM) is a unique nutraceutical food that
has a variety of biological functionalities like cell-mediated immunity
enhancement, anti-oxidation, anti-aging, anti-fatigue and hypoglycemic
activities (Lv, Wang, Cheng, Huang, & Wang, 2013). LRM has been used
as a traditional herb for the treatment of heart diseases, abnormal
menstruation and menopause etc. (Liu et al., 2013). In addition, LRM
possess strong drought- and salt-resistance, making it an ideal plant for
preventing soil desertification and alleviating soil salinity-alkalinity
(Zheng et al., 2011). Consequently, LRM is considered important for the
agriculture and ecosystem particularly in China's western provinces
where LRM is widely distributed (Wang et al., 2018).

Qinghai Province is one of the major producers of LRM in China due
to its suitable climate and geographical conditions (Lv et al., 2013).
Qinghai LRM contains higher content of nutritional components and
therefore has higher market value as compared to that from other
provinces (Zheng et al., 2011). Mislabeling and selling of fake and in-
ferior quality LRM has been increased in the market due to economic

considerations (Wang et al., 2018). This severely infringes the reputa-
tion of famous high-quality products and damages the interests of
consumers, and may also cause serious food safety issues (Zhang, Liu,
Li, & Zhao, 2017). A possible solution for this issue is to establish a
reliable traceability and identification system (Qiu, Wang, Tang, & Du,
2015).

Previously, high-end instrumental analysis method has been estab-
lished by our team to trace the LRM geographical origins (Wang et al.,
2018). The results suggested that high-performance liquid chromato-
graphy-mass spectrometry (HPLC-MS) combined with principal com-
ponent analysis (PCA) and linear discriminant analysis (LDA) was a
powerful analytical method for the traceability of geographical origins
of LRM. However, the HPLC-MS facility is too expensive to the remote
LRM producing and trading regions. The operation of HPLC-MS system
and the interpretation of analytical results are time- and reagents-
consuming and require well-trained personnel (Qiu, Wang, Tang, et al.,
2015). Therefore, it has become increasingly important to develop a
rapid, robust, and simple alternative technique for determining the
authenticity of LMR.
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Electronic nose (e-nose) and electronic tongue (e-tongue) mimic the
olfactory and gustatory systems of the mankind and are good alter-
natives for traditional analysis of foods (Hong, Wang, & Hai, 2012). By
monitoring the flavour and taste, they have been successfully applied
for classifying the types and predicting the deterioration of foods such
as fruit juices, peanuts, and honey etc. (Haddi et al., 2014; Naila, Flint,
Sulaiman, Ajit, & Weeds, 2018; Qiu, Wang, & Gao, 2015). The combi-
nation of e-nose and e-tongue system have also been suggested to dis-
criminate and classify foods (Ghasemi-Varnamkhasti et al., 2012). In
general, algorithms techniques such as PCA and LDA were applied in
those researches to mine useful information from the responses of e-
nose and e-tongue (Qiu, Wang, Tang, et al., 2015). These approaches
have good practical applications because they have the advantages of
low cost, minimal sample preparation, non-destructive detection, less
time consuming, and simple sampling procedure etc. (Li, Lei, Zhang,
Shao, & Xie, 2015; Liu & Tu, 2012; Shen et al., 2018). Therefore, the
objective of this study was to develop a fast and simple method to trace
the geographical origins, harvest years and varieties of LRM based on e-
nose and e-tongue assays and their combination, by using PCA and LDA
assays. This would provide an alternative reliable technique for the
authenticity recognition of LRM.

2. Materials and methods

2.1. Plant materials and treatments

A total of 243 LRM samples belonging to two different varieties
were randomly collected from 5 different provinces in China in 2016
and 2017 (Table 1). The environmental factors of geographical loca-
tions of LRM sampling have been given in our previous work (Wang
et al., 2018). The fully ripened fruits were hand-picked and transported
right after collected in heat preservation box with ice bags to the la-
boratory, in where they were freeze-dried with a Sihuan® LGJ-18C va-
cuum freeze drier (Beijing, China), crushed to a fine powder using a
Zhaoshen® XS-10 pulverizer (Shanghai, China), and sieved through a
40-mesh sieve. The e-nose and e-tongue measurements were following
the method of Tian, Deng, and Chen (2007) by stirring 1.00 g of the
powder in 100mL of deionized water. The mixture was heated at 85 °C
for 5min and then cooled in an ice-bath to room temperature. The
residues were filtered and the supernatants were analyzed immediately
by the e-nose and e-tongue. Each sample was successively analyzed for
three times and average values were used in score plot for further
analysis.

2.2. E-nose system and sampling procedure

The headspace analysis was performed with an ISENSO® iNose e-
nose (New York, USA). The e-nose system consists of a sampling ap-
paratus, a detector that contains sensor arrays and a computer equipped
with pattern-recognition software for data recording and elaboration
(Fig. 1A). The sensor array system is composed of 10 metal-oxide

semiconductor chemical sensors to detect volatile compounds. The 10
sensor arrays are named as follows: N-S1 (aromatics), N-S2 (nitrogen
oxides), N-S3 (ammonia, aromatic molecules), N-S4 (hydrogen), N-S5
(methane, propane, and aliphatic non-polar molecules), N-S6 (broad
methane), N-S7 (sulfur-containing organics), N-S8 (broad alcohols), N-
S9 (aromatics, sulfur- and chlorine-containing organics) and N-S10
(methane and aliphatics). The details of the e-nose system have been
introduced by Zhang, Wang, Tian, Yu, and Yu (2007).

Prior to detection, the gas path of e-nose was cleaned by cleaning
gas (ambient air filtered through activated charcoal) for 20min to
normalize the sensor signals. Each sample solution (5.00mL) was
placed in a 50mL airtight glass vial and sealed with plastic wrap for
10min. Then, the headspace gaseous compounds were pumped into the
sensor arrays through Teflon tube connected to a Luer-lock needle in
the plastic wrap at a flow rate of 300mL/min (Wang et al., 2016). The
measurement phase was lasted for 80 s, which was long enough for the
sensors to reach stable signal values. The signal data from the sensors
were collected by the computer at an interval of 0.1 s. When the mea-
surement process was complete, the acquired data were stored for
further analysis. After each measurement, zero gas (air filtered by ac-
tive carbon) was pumped into the sample gas path from the other port
of the instrument for 240 s to normalize sensor signals. All the e-nose
measurements were performed at room temperature.

2.3. E-tongue system and sampling procedure

An ISENSO® SmarTongue e-tongue (New York, USA) was employed
to classify and characterize LRM samples. The e-tongue system consists
of an electronic tongue, a device called “Multi-frequency large ampli-
tude pulse scanner, MLAPS” and a computer (Fig. 1B). It comprises six
metallic disc electrodes (T-S1, platinum; T-S2, gold; T-S3, palladium; T-
S4, tungsten; T-S5, nickel; T-S6, silver) as working electrodes, a Ag/
AgCl electrode as reference electrode and a platinum counter electrode
as auxiliary electrode for standard three-electrode systems. MLAPS is a
potentiostat with six channels that makes the potential pulses on the
working electrodes and enables them to work consecutively at three-
electrode configurations. The computer contains data acquisition
system and basic data analysis software and was used to set and control
the potential pulses, measure and store pulse current responses. The
details of the e-tongue system have been described by Tian et al.
(2007).

The measurements were directly performed without any sample
solution pre-treatments. About 25.00mL of solution was used to ensure
that sensors were fully immersed. Before measurement, sensors were
rinsed for 10 s using deionized water to minimize and correct the drift
of sensors. The measurement time was 180 s (30 s for each working
electrode) for each sample. The principle of the method was to measure
the changes in the voltage (mv) intensity between the working elec-
trodes and the reference electrode. The applied potential waveform was
multi-frequency large amplitude pulse voltammetry (MLAPV), con-
sisted of three segments of 1 Hz, 10 Hz and 100 Hz, respectively. The

Table 1
The information of LRM samples.a

Province Detailed origin Variety Year Code Number of samples collected in each county or
farm

Total number of samples

1 Gansu Guazhou, Yumen, Jinta Wild 2017 GS-W-17 15 45
2 Inner Mongolia Ejina, Alashanyou, Alashanzuo Wild 2017 IM-W-17 15 45
3 Ningxia Pingluo, Helan, Yongning Wild 2017 NX-W-17 15 45
4 Qinghai Gomud, Delingha, Dulan Wild 2017 QH-W-17 15 45
5 Xinjiang Akesu, Kuerle, Hetian Wild 2017 XJ-W-17 15 45
6 Qinghai Gomud, Delingha, Dulan Wild 2016 QH-W-16 3 9
7 Qinghai Hedong farm, Delingha farm, Nomuhong

farm
Cultivated 2017 QH-C-17 3 9

a Hedong, Delingha and Nomuhong farm located in the counties of Golmud, Delingha and Dulan, respectively.
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collection rate is 1 point every 0.001 s. All the samples were tested at
room temperature.

2.4. Data fusion and analysis

According to the abstraction level, there are three approaches for
data fusion, i.e., high-abstraction level, mid-abstraction level and low-
abstraction level (Callao & Ruisanchez, 2018; Haddi et al., 2014). For
the high-level fusion approach, each data source is analyzed to con-
struct a model separately. Then the results from all the models are
combined (Liu & Brown, 2004). For the mid-level fusion approach, each
data source is feature extracted separately. Then all the extracted fea-
tures are merged. For the low-level fusion approach, all the data sources
are simply concatenated. Then the combined dataset is used to con-
struct a model. The last approach was elaborated by several researchers
and satisfactory results were obtained (Haddi et al., 2014; Qiu, Wang,
Tang, et al., 2015). Therefore, we adopted the low-level fusion for the
combination of data from the e-nose and e-tongue assays in the present
study.

2.5. Data analysis

The data obtained from e-nose and e-tongue assays and their com-
bination were subjected to pattern recognition analysis. Rows of the
dataset represent the analyzed LRM samples (243 objects) and columns
represent the response values of the sensors (10 for e-nose, 6 for e-
tongue and 16 for the two instruments combined). Unsupervised (PCA)
and supervised (LDA) approaches were employed using chemometric
techniques as described by Granato et al. (2018) and Abad-García,
Berrueta, Garmón-Lobato, Urkaregi, Gallo, & Vicenteto (2012) to ex-
tract the main information in multivariate data and to construct clas-
sification models according to geographical origins, harvest years and
varieties.

PCA is a most popular unsupervised exploratory technique to reduce
the multidimensional data to a lower dimensional approximation and

simplify the interpretation of large datasets containing many objects
(samples) and variables (responses) (Callao & Ruisanchez, 2018). In
this method, PCA interprets the data in a two or three dimensions by
the first two or three principal components (PCs). The chosen PCs
contain the maximum data variance and thus linear combined to the
original response vectors.

LDA is a main discriminant technique to explicitly model the dif-
ference between the classes of data, and it provides a classification
model showing the classification scores with respect to the descriptors
(Callao & Ruisanchez, 2018). In this method, LDA maximizes the var-
iance between categories and minimizes the variance within categories.
To ensure the most significant variables involved in the differentiation
are selected, a stepwise variable selection procedure is performed using
a Wilks' λ and F statistic. The procedure will not check the previously
selected variables before the inclusion of new variable (e.g. the early
selected variable will be removed if it is no longer useful) until there is
no other variables meet the criteria for entry or when the next included
variable is the one that was just removed. A cross-validation procedure
(leave-one-out test) is used to evaluate the classification performance.
Compared with PCA, LDA can notice the distribution of points in the
same category and the distance between them (Hong et al., 2012). The
reliability of the classification models constructed in this study were
evaluated based on recognition and prediction capacity. All data were
processed with SPSS19.0 software (SPSS Inc., Chicago, USA).

3. Results and discussion

3.1. E-nose and e-tongue response to LRM

Typical responses of e-nose to LRM are summarized in Fig. 2A–G.
The response signal was expressed as G/G0, where G and G0 are the
conductivities of the sensors when exposed to the sample gas and zero
gas, respectively. The response signals of all e-nose sensors reached at
dynamic balances after 60 s. Response signals for each sample were
increased at different rate. The response signals of N-S2 increased and

Fig. 1. The procedure containing the set-up of electronic nose (A) and electronic tongue (B) for classifying LRM used in the present study and the comparison
between it and the procedure proposed in the previous study (Wang et al., 2018).
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remained at a relatively high level, while the response signals of N-S3,
N-S5 and N-S6 were also increased but remained at middle high level;
The remaining response signals were increased slightly and remained at
low level, especially the response signals of N-S9 (Fig. 2A–G). Overall,
the response signals of N-S2, N-S3, N-S5 and N-S6 were remained
higher as compared to other response signals (Fig. 2A–G). The con-
centration and threshold values of volatile compounds should be con-
sidered in order to assess their contribution to flavor perception (Tian,
Gou, Niu, Sun, & Guo, 2018). The results suggested that nitrogen oxides
(N-S2); ammonia, aromatic molecules (N-S3); methane, propane, and
aliphatic non-polar molecules (N-S5) and broad methane (N-S6) mainly
contributed to the aroma of LRM.

Since the original experimental data were very large, the pulse
current profiles of e-tongue to LRM samples were formed using the
maximum, minimum and two inflection points of each cycle (Tian
et al., 2007) and are summarized in Fig. 3A–G. It should be noted that,
to separate different types of samples, different frequency segments and
their optimization are needed, because one working electrode has dif-
ferent separation ability in different frequency segments (Tian et al.,
2007). The segments of the MLAPV were set at 1 Hz, 10 Hz and 100 Hz,
and the optimal combination of T-S1 (1 Hz), T-S2 (1 Hz), T-S3 (100 Hz),
T-S4 (1 Hz), T-S5 (10 Hz) and T-S6 (1 Hz) was used to form the original
data of e-tongue. Although the results of e-tongue analysis were

summarized as pulse currents, it suggested that different matrix may
present in food samples (Bougrini et al., 2014). The main compound
families that contribute to the taste of foods are minerals, sugars, acids,
proteins, lipids and fats (Bougrini et al., 2014; Dias et al., 2009;
Winquist et al., 2005). In this study, LRM samples were swelled in the
liquid state when they were measured by e-tongue. Therefore, sugars
and acids could be the main components in the liquids. It was pre-
viously identified by Zhang, Chen, Zhao, and Xi (2016) that LRM juice
was the most acidic with a higher amount of titratable acid and had
lesser amount of total soluble solid as compared to Lycium barbarum L.
genotypes, another species of the genus Lycium. As total soluble solid
generally contains sugars, acids and secondary metabolites present in
fruits (Beckles, 2012), acids could be responsible for the specific taste of
LRM.

It was detected that both the e-nose and e-tongue responding fin-
gerprints of different LRM samples were same (Fig. 2A–G and 3A-G),
suggesting the LRM samples may have similar genetic background (Li
et al., 2017). It is not surprising that the cultivated LRMs have same
genetic background as those of wild LRMs, because they are actually
transplanted from the wild ones. However, significant differences were
observed in the strength of response signals and pulse current values of
LRM samples from different provinces. The differences could be ex-
tracted with each type of sensor by radar plot as depicted in Figs. 2H

Fig. 2. E-nose responses to LRM samples of GS-W-17 (A), IM-W-17 (B), NX-W-17 (C), QH-W-17 (D), XJ-W-17 (E), QH-W-16 (F) and QH-C-17 (G), and radar chart
analysis (H) of response values of ten e-nose sensor responses.

Fig. 3. E-tongue responses to LRM samples of GS-W-17 (A), IM-W-17 (B), NX-W-17 (C), QH-W-17 (D), XJ-W-17 (E), QH-W-16 (F) and QH-C-17 (G), and radar chart
analysis (H) of response values of six e-tongue sensor responses.
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and 3H. They were formed with the mean values of the response signals
of each e-nose sensor during 70–80 s and the maximum values of the
pulse currents of each e-tongue sensor, respectively. Although the radar
charts of different LRM samples showed a similar shape, the strength of
response signals by e-nose and pulse current values by e-tongue were
different. The response strengths of N-S2, N-S3, N-S5, N-S6 and N-S10
and the pulse current values of T-S1, T-S3, T-S4 and T-S6 were parti-
cularly different among the samples (Figs. 2H and 3H). However, the
response strength and the pulse current values of all the samples of
Qinghai Province were found same (Figs. 2H and 3H). The radar plots
show a clear pattern variation among different LRM samples excepting
Qinghai Province samples. Environmental factors like soil components,
weather and climatic conditions (rainfall, sunlight, diurnal tempera-
ture) are the primary sources of variations among different provinces
(Wang et al., 2018; Zheng et al., 2011; Łata, 2007). The rainfall has
been reported to be a key factor directly linked to the formation of
aromatic and taste components (Russo et al., 2014). Therefore, it is
expected that LRM samples from Gansu and Ningxia Provinces have a
higher level of aroma components and pulse currents than these from
other provinces, because these two provinces have been reported to
have more rainfall than other provinces (3–126 and 500-200mm, re-
spectively) in the sample growing years (Wang et al., 2018). The results
showed that the samples of GS-W-17 and NX-W-17 had higher values of
N-S2, N-S3, N-S5, N-S6 and N-S10 than that of other provinces
(Fig. 2H). Similarly, GS-W-17 exhibited the highest pulse current in the
sensors of TS-1, TS-3 and TS-4 (Fig. 3H). It has been reported that en-
vironmental variations (rainfall, sunlight and temperature) can trigger
year-to-year variations in the concentrations of components in fruits
(Łata, 2007). In addition, the component compositions in fruits could

also be influenced by agronomic management practices like irrigation,
fertilization, herbicide and pesticide treatments etc. (Tomaas-Barberaan
& Espin, 2001). However, similar response signal strengths and pulse
current values were observed in the present studied samples (Figs. 2
and 3). The possible reasons are that compounds in the fruits are ge-
netically controlled, and no discernible difference was found in the
climatic conditions including temperature, air pressure, relative hu-
midity, water vapor pressure, wind, and precipitation etc. between the
two years in Qinghai Province (National Meteorological Information
Center, Available: https://data.cma.cn/data/detail/dataCode/A.0012.
0001.html). The results suggested that LRM obtained from different
geographical origins exhibited significant differences in aromatic
components and pulse currents, indicating that geographical origin
pays an important role in forming the aromatic and taste components of
LRM. For this reason, the differences in aromatic components and pulse
currents could be revealed by appropriate statistical analyses, and
might be credible indices for LRM classification based on geographical
origins.

3.2. Classification of LRM based on individual e-nose and e-tongue dataset

In general, not all the data from each working electrode of the e-
nose and e-tongue is required for multivariate statistics process, only
some features extracted from the response curve of each sensor are
needed (Haddi et al., 2014; Tian et al., 2007). Hence, the mean values
of the response signals of each e-nose sensor during 70–80 s and the
maximum values of the pulse currents of each e-tongue sensor were
used as the data matrix for multivariate statistical analysis (Haddi et al.,
2014; Tian et al., 2018).

Fig. 4. Two-dimensional PCA plots performed on LRM samples with data gathered using the e-nose (A), e-tongue (B) and fusion system (C).
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First, PCA was applied to the data matrix of e-nose (10×243) and
e-tongue (6×243). In e-nose analysis, the total contribution variance
of PC1 and PC2 is 89.82%, which is sufficient to explain the total
variance of the e-nose dataset. From the loadings of the variables, the
first principal component (PC1) contributed 81.90% to total variability
and contains five major influential features (N-S2, N-S3, N-S5, N-S6,
and N-S10). The second principal component (PC2) contributed 7.93%
to total variability and contains one major influential feature (N-S9)
(Table S1A). PC1 and PC2 were used to defined a two-dimensional
spaces for representing the scores of the samples, in which a natural
separation between samples on the basis of geographical origins was
observed (Fig. 4A). It shows that LRM samples obtained from different
geographical origins were clustered into five groups including those
from Qinghai, Gansu, Inner Mongolia, Xinjiang and Ningxia. However,
LRM samples of QH-W-16 and QH-C-17 were almost located in the
same cluster of QH-W-17 (Fig. 4A). In e-tongue analysis, the total
contribution variance of the first two PCs was higher than 90.0%, in-
dicating that they were the main source of total system variance. PC1
explained 73.94% of the variance, and T-N1, T-N3, T-N4 and T-N6
predominantly contributed to it. PC2 yielded 16.65% of explainable
results, with T-N5 loaded heavily (Table S1B). Discrimination of LRM
samples according to geographical origins was completed by two-di-
mensional score plot defined by PC1 and PC2 (Fig. 4B). However, one
data point from the QH-W-17 group was connected to the IM-W17
group, and one data point from the GS-W-17 group was very close to
the QH-W-16 group. These data points may be misclassified into its
neighboring groups in the above classification analysis. In addition,
there was a certain overlapped area with no clear differentiation was
observed between LRM samples from Qinghai Province (Fig. 4B). The
clustering results (Fig. 4A and B) suggested that PCA could be used to
classify LRM samples from each other on the basis of geographical
origins. However, the samples within the same province having dif-
ferent varieties and harvest years were unable to be separated sa-
tisfactorily.

LDA was then applied to the same data matrix to construct dis-
criminant model for distinguishing and identifying LRM samples. The
leave-one-out test was applied to validate the discriminant functions.
Six discriminant functions were obtained for e-nose dataset, which re-
sulted in 100.0% total recognition ability (Table S2A) and 86.4% pre-
diction ability (Table S3A). LRM samples of GS-W-17, IM-W-17, NX-W-
17 and XJ-W-17 were clearly distinguished from each other, and from
the samples of Qinghai Province. The prediction correct rate for LRM
samples of GS-W-17, IM-W-17, NX-W-17 and XJ-W-17 were 97.8%,
100.0%, 100.0% and 100.0%, respectively (Table S3A), which can be
considered satisfactorily. However, as shown in Table S3A, the pre-
diction correct rate for samples of Qinghai Province was not satisfac-
tory. The sum of the first two discriminant functions covered 92.5% of
the total variance explained. The first function accounted for 67.9% and
the second one accounted for 24.6% of the total variability (Table S2A).
The scores of the first two functions were plotted as a two-dimensional
scatter diagram (Fig. 5A). Meanwhile, five discriminant functions were
obtained for e-tongue dataset. The model shows a highly satisfactory
classification performance allowing to correctly classify 76.7% of the
samples (Table S2B), and 86.8% for the cross-validation procedure
(Table S3B). The first two discriminant functions explained 92.3% of
the total variance of the e-tongue data (the first explaining 68.7% and
the second 23.6%) (Table S2B). The graphical representation of LRM
samples in the plane defined by the first two discriminant functions is
presented in Fig. 5B. The samples of GS-W-17 and XJ-W-17 were clearly
distinguished from each other and from other samples, with prediction
abilities of 95.6% and 100.0% respectively (Table S3B). Although the
samples of IM-W-17 and NX-W-17 were not completely separated, they
exhibited a considerably satisfactory prediction abilities of 75.6% and
80.0%, respectively (Table S3B). The samples of QH-W-17 and QH-W-
16 were completely overlapped. The data points of QH-W-17 samples
were not observed, which may be misrecognized as the samples of QH-

W-16 (Fig. 5B). Fig. 5A and B clearly confirmed that the LDA achieved
an unambiguous classification of LRM samples based on geographical
origin by showing a sufficient division of LRM samples into different
clusters. However, the samples within the same province were not
clearly distinguished from each other.

The results of PCA and LDA suggested that both the aroma com-
ponents and pulse currents could be considered as indicators to de-
termine LRM geographical origins, thus providing an effective method
to trace geographical origins, but failed to differentiate the samples on
the basis of harvest years and varieties. Moreover, geographical origin-
based classifications applied on e-nose dataset revealed that the major
aroma compounds such as N-S2, N-S3, N-S5 and N-S6 exhibited a great
impact on geographical differentiation. Meanwhile, the minor com-
pound such as N-S9 also significantly influenced the geographical
origin-based classification. The remaining aromas in LRM samples were
less important for the classification. A similar result was obtained in the
analysis of the geographical origin-based differentiation applied on e-
tongue dataset. The results suggested that not only the major compo-
nents provided by the e-nose and e-tongue, but also the minor ones can
properly characterize LRM samples on the basis of geographical origins.
This is in consistent with the previous studies, which suggested that
both major and minor components in fruits can be considered as re-
presentative indices for reliable differentiation of them from different
geographical origins (Guo, Yuan, Dou, & Yue, 2017; Guo, Yue, Yuan, &
Wang, 2013; Wang et al., 2018). The results suggested that both e-nose
and e-tongue analysis were able to separate the LRM samples according
to geographical origins. However, they could not be used for variety-
and harvest year-based classifications of LRM.

3.3. Classification of LRM based on combined e-nose and e-tongue dataset

Data fusion has been applied in various foods and quality control
processes (Callao & Ruisanchez, 2018). Particularly, low-level abstrac-
tion data fusion was proved a good approach to surpass the lack of
recognition, which has been successfully applied to separate the over-
lapped samples (Haddi et al., 2014; Qiu, Wang, & Gao, 2015). Hence,
PCA and LDA were conducted on the combined dataset of e-nose and e-
tongue to improve the geographically based classification of LRM
samples and to discriminate LRM samples within the same province
(Qinghai). The e-nose and e-tongue data were combined and the
merged matrix was composed of 16 variables. Before classification
modeling, PCA was carried out for exploratory data analysis. The total
contribution variance of first two PCs obtained from the data fusion was
80.1% that is generally sufficient to explain the total variance of the
dataset. As shown in Table S1C, the response signal of N-S2, N-S3, N-S5
and N-S6 have the highest weight in the first PC (explaining 52.23% of
the variability). The second PC that explained 27.88% of the total
variance was related to T-S1, T-S3, T-S4 and T-S6. Fig. 4C shows the
two-dimensional scatter plot of the scores of PC1 versus PC2. It shows
that LRM samples obtained from different geographical regions were
clustered into five groups. However, a total of two data points from the
IM-W-17 and QH-W-17 groups was connected to the XJ-W-17 and IM-
W-17 group, respectively, and one data point from the NX-W-17 group
was close to the XJ-W-17 group. Besides, the LRM samples from Qin-
ghai Province were not clearly differentiated, giving a completely
overlapped distribution. LDA was also applied to the above data matrix.
Six discriminant functions were constructed. A satisfactory differ-
entiation on the basis of the five provinces was achieved with a total
recognition ability of 100% (Table S2B) and a prediction ability of
92.6% (Table S2C). The first two functions explained the 82.3% of the
variance (58.2% and 24.1%, respectively) (Table S2C). The separation
of LRM samples was checked by plotting the two functions scores
(Fig. 5C), showing that the LRM samples were well distinguished from
each other based on geographical origins. The prediction correct rate
for both were 100.0% (Table S3C). However, the samples within Qin-
ghai Province were not clearly distinguished from each other (Table
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S3C).
After merging data, although the total contribution variance of the

first two PCs (80.1%) was lower than that of individual e-nose (89.82%)
and e-tongue (90.59%) datasets (Fig. 4), it was generally sufficient for
explaining the total variance of the combined dataset. The potential
reason is that, the merged measurement of two data sources provided
more redundant information which directly influenced the ability of
identification (Haddi et al., 2014). The total classification ability
(92.6%) was higher than that of individual e-nose (86.4%) and e-tongue
(86.8%) datasets (Table 3S). The higher total classification ability was
resulted from the high cross-sensitivity of the combined system (Haddi
et al., 2014). The results suggested that fewer extraction gives higher
rate of anticipation. Besides, principal response signals of the individual
e-nose and e-tongue assays contributed heavily to the total variance,
indicating that data fusion have no negative effect on the stability of
sensor responses (Sadrieh et al., 2005) and can be used to evaluate the
distribution of LRM samples. In summary, the results indicated that
data fusion of both instruments from perceptual knowledge could be a
better way than individual utilization of e-nose or e-tongue. However,
both the PCA and LDA did not show a sufficient division of LRM sam-
ples on the basis of harvest years and varieties, even though a clear
separation of LRM samples on the basis of geographical origin was
obtained (Figs. 4C and 5C). Specific frequency segments for working
electrodes of e-tongue may be required to be develop in the dis-
crimination of various samples (Tian et al., 2007). The research will be
presented in further study.

In terms of efficiency, fast learning, and high accuracy rate, multi-
variate statistical analysis combined with e-nose and e-tongue systems
has great advantages over traditional detection methods such as

chemical analytical methods and sensory evaluation (Qiu, Wang, Tang,
et al., 2015). Moreover, as a kind of instrumental analyses, it requires
less time and chemical reagent consumption in comparison to the high-
end instrumental analysis proposed in our previous study (Wang et al.,
2018) (Fig. 1). Furthermore, with the development of technology, more
advanced portable e-nose with a novel headspace diffusion sampling
method is developed, making the measurement cheaper and more
convenient (Li et al., 2015). Hence, the procedure proposed in this
study could be used as a fast and simple method. In addition, previously
we suggested to establish a classification methodology for LRM with a
broader array of samples (Wang et al., 2018). This study expanded the
LRM samples from 9 to 45 for each province (Table 1). LRM samples
from different harvest years and varieties were also considered at the
present study. Hence, this geographical origin-based classification
methodology of LRM have potential practical application features.

4. Conclusion

In this study, e-nose and e-tongue systems and their combination
were applied to distinguish LRM samples from different provinces,
harvest years and varieties. The selected features of the two instruments
were used as the input variables of the multivariate statistical analysis.
Irrespective of using the two instruments separately or in combination,
the results confirmed that multivariate statistical analysis combined
with e-nose and e-tongue assays achieved an unambiguous classifica-
tion between LRM samples from different geographical origins, but
failed in distinguishing samples from different harvest years and vari-
eties. The data of LDA were in agreement with PCA and showed sa-
tisfactory discrimination for LRM samples based on geographical

Fig. 5. Two-dimensional LDA plots performed on LRM samples with data gathered using the e-nose (A), e-tongue (B) and fusion system (C).

Z.-C. Wang et al. Food Control 98 (2019) 457–464

463



origins. Furthermore, it was demonstrated that the data fusion using
low-level of abstraction approach was a good approach to improve the
recognition. In conclusion, multivariate statistical analysis combined
with e-nose and e-tongue assays represents a fast and reliable pattern
screening method and could be an appropriate method for original
traceability of LRM. Further work is currently in progress to develop an
effective and reliable technique to characterize LRM with different
harvest years and varieties.
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